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ABSTRACT

The Law of Varying Action enunciated by Hamilton in 1834-

1835 permits the direct solution of the problems of Mechanics,

stationary or non-stationary. All problems of statics but only

certain problems of dynamics fall under the classification of

"stationary" to which direct solutions have heretofore been pos-

sible. It has been impossible to obtain direct solutions to non-

stationary problems. through the present state of energy theory

which has been limited for 138 years to Hamilton's principle. It

will be shown that Hamilton's Law permits the direct solution of

non-stationary as well as stationary problems in the mechanics of

solids without any knowledge or use of differential equations.

Whether a system is conservative or non-conservative is of no

consequence. Initial conditions, final conditions, and boundary

conditions pose no problem. In this introductory paper, direct7
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solutions are demonstrated for conservative and non-conservative,

stationary and/or non-stationary particle motion. The generality

of this theory of mechanics, which is free of the constraints im-

posed by the mathematics of differential equations, will be demon-

strated in subsequent papers on stationary and non-stationary mo-

tion of beams and plates. All of these papers will stress three.

major points: 1) simplicity, 2) generality, and 3) accuracy.
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NOMENCLATURE

Ai coefficients of power series time variable

B coefficients of power series time variable

c damping force coefficient. May be function of time

c/O damping coefficient at t = t\

ci rate of change of damping coefficient

ci critical damping coefficient

F force at t = t

g Gravitational parameter. Taken as constant in this paper

i,j;k,R subscripts

k spring force coefficient. May be function of time

k spring coefficient at t = t&

1k rate of change of spring coefficient

m mass. May be function of time

m6  total mass at t = t

mi rate of change of mass in variable mass problem; also

mass number one in two-degree of freedom problem

M,N number of terms in truncated power series. Also

degree of resulting polynomial

Qi general force acting in general displacement direction

C/1 dependent space variable, generalized displacement

T kinetic energy, work of inertial forces

T period, seconds, T = 2f/w

T static thrust of rocket, T = rVe

t real time

t8 time at which observation of phenomena begins
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te time at which observation of phenomena ends

V initial velocity at t = t

W work of all forces other than inertial forces

y, y dependent space variable; displacement, velocity

y,6 initial displacement at t = t+

6 operates on displacement while forces are held constant

non-dimensional damping coefficient, C = c/c/

64, 6/ dependent space variables, angular displacement

0'\, 0,'o angular displacement at t = t^

ek, e-f\ angular velocity at t = t/

T non-dimensional time, T = t/ta

w circular frequency, radians/sec., harmonic motion



INTRODUCTION

Hamilton set forth the Law of Varying Action in papers con-

cerning a general method in dynamics, published in 1834 and 1835.4-

When the varied paths were assumed to be co-terminus with the real

path in both space and time, Hamilton's Law reduced to Hamilton's

principle.*] By the year 1937, when Osgood published his text,

"Mechanics,' Hamilton's principle had been established as "...an

independent foundation of mechanics." ' Osgood simply postulates

the integral,

(Ti-W) t (1)

which he called Hamilton's integral and then obtains the following

equation by varying Hamilton's integral and integrating the kinetic

energy term by parts:

~to

where generalized coordinates have been used instead of the Car-

tesian coordinates used by Osgood, and where 6t has been set equal

to zero at the outset. Following Hamilton, Osgood assumes all of

the 6q4 to vanish at t/ and t'l; i.e., the end points of the var-

ied paths are postulated to be co-terminus with the real path;

thus, the first term on the right vanishes. The integrand of the

second term on the right is the equations of Lagrange which are

known to vanish. Eq. 2 then reduces to Hamilton's principle,

5



S "(T-W J-, = 0 (3)

where it is understood that W is the work of both conservative and

non-conservative forces.

When it is observed that Lagranges equations vanish whether

or not the 6q/vanish at t/& and t, eq. 2 results in the mathe-

matical expression for the Law of Varying Action where 6t has been

set equal to zero for the Newtonian and/or Lagrangian mechanics to

be discussed herein,

(T-tW)L (4)

Note that the zero on the right hand side of eq. 4 results from

the fact that nature requires the equations of equilibrium to

vanish as observed by Newton. It has nothing to do with the proof

in variational calculus that the integral is an extremum. The

meaning of eq. 4 is then quite clear,

"A particle or a system or particles

will follow a path and/or assume a

configuration such that the equation,

S- 3()cs . -0

is satisfied."
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Another interesting point is that the integral on the right

hand side of eq. 2, when taken alone, is identical to the result

obtained when Galerkinb method is applied to Lagranget equation.

Here, without any reasonings as to setting the weighted error

equal to zero, it is seen that the equation,

vanishes if and only if eq. 4 vanishes. Thus, the RitzJ method

of solution correctly applied to eq. 4 can readily be shown to be

identical to the Galerkin method applied to the differential equa-

tions of Lagrange or Euler-Lagrange, as in eq. 5. Although the

Lagrange or Euler-Lagrange equations are equally available from

eq. 3 and eq. 4 it is well known that the direct solution method of

Ritz cannot be applied to Hamilton's principle with the same gener-

ality with which Galerkins method can be applied to the differen-

tial equations of Lagrange or Euler-Lagrange.

It has been obvious to competent researchers that something

is wrong somewhere. Bisplinghoff and Ashley on p. 36 of Ref. 4,

identify the problem,

"No difficulty is encountered when Lagrange's equa-

tions can be constructed, for these are differential

equations which may, in principle, be integrated

from instant to instant. But the question of how

to handle the upper limittj. during direct appli-

cation of Hamilton's principle is a more subtle one."
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The wording of this statement implies two things: 1) that

it may not be possible to construct Lagrange's equations for a

physical system from Hamilton's principle and 2) that Bisplinghoff

and Ashley did not have the slightest suspicion that the problem

lies directly in the concepts with which Hamilton's principle

has been passed along for 138 years.

Fung, p. 318, Ref. 5, arrives at a restricted form of Hamil-

ton's Law for a deformable body,

In some applications of the direct method of calcu-

lation it is even desirable to liberalize the vari-

ations 6u4 at the instant tb and t/, and use Hamilton's

principle in the variational form (4) which cannot be

expressed elegantly as the mimimum of a well-defined

functional. On the other hand, such a formulation

will be accessible to the direct methods of solution.

On introducing (5), (7), and (10), we may rewrite

eq. (4) in the following form

(13 ) %( . -K+A)AI. , ±

First, Fung's eq. (13) is not Hamilton's principle. Be-

cause of the last term and the concepts under which it was derived,

it is a very restricted form of Hamilton's Law. Second, Fung gives

no indication as to how the problem of the upper limit, t/, as

pointed out by Bisplingfhoff and Ashley, is to be treated. Third,

this writer is not aware of any successful attempt to achieve a
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direct solution to any non-stationary problem of mechanics by the

use of Fung's concepts and his eq. (13). For stationary problems,

his eq. (13) reduces immediately, as does Hamilton's Law, to Ham-

ilton's principle.

The lack of generality of the direct solutions obtainable

from Hamilton's principle may have undermined confidence in the

accuracy obtainable for such solutions. The writer's experience

with the literature indicates that such is the case. This prob-

lem is also implied by Fung's beginning sentence on p. 336;, "If

we try to approximate...". This implies that we may not be able

to approximate and would discourage one from trying. A sequence

of papers on non-stationary motion of particles, beams, plates, and

shells will demonstrate that Hamilton's Law will yiela answers with

almost unbelievable simplicity and accuracy. The breadth of the

problems, both stationary and non-stationary, will serve to demon-

strate the generality of Hamilton's Law when applied with the

proper concepts.

It is the purpose of this paper to demonstrate the application

of Hamilton's Law to achieve completely general solutions to

stationary and non-stationary particle motion problems by direct

application of eq. 4. To enable this to be accomplished with great

simplicity, two well known observations are made:

(1) The path of any mass particle through space-time is con-

tinuous; i.e., no particle of matter can occupy two points in

space at the same instant in time.

(2) The slope of the space-time path of any particle is

continuous. 9



Thus, the space-time path of any particle of matter is

continuous with continuous first derivatives. This is pre-

cisely part of the requirement for admissible functions when

using the Ritz method in conjunction with stationary problems

in the theory of elasticity.4

To introduce the simplicity of the application, only linear,

one and two degree of freedom particle motion will be treated in

this paper. Many degrees of freedom are treated in deformable

body problems.
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vNE DEGREE OF FREEDOM

Consider a particle of constant mass on which acts a

linear restoring force, k(t)y, a linear viscous damping force

c(t)y' and a force that is a specified function of time F(t). In

other words, this is the linear forced-damped-spring-mass system

for which the differential equation is well-known and to which

general solutions for comparison of results may be readily ob-

tained from the differential equation. By substituting the kin-

etic energy and the work of the prescribed forces into eq. 4 and

taking the variation, one obtains the equation,

Co At Y* (6)

The convential procedure at this point is toderive the dif-

ferential equation from which the solution may be obtained. The

purpose of this paper, however, is.to demonstrate that the solu-

tion may be obtained without any reference. to or

knowledge of differential equations. By virtue of the fact that

the time-space path is continuous with continuous first deriva-

tives, it is possible to use as an admissible function a simple

truncated power series,

YA ,t
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Convergence is assured by Weirstrass' theorem. / Note that no

concept of the shape of the time-space path is necessary. The

power series must satisfy the specified displacement and velocity

at t = t, but not at t = ti. The displacement and velocity at t/

cannot in general be known in advance because they are the result

of both the initial conditions and the time history of the forces

acting between t^o and t,\. By the use of constraints, conditions

can be, of course, imposed at ti.

In eq. 6, m, k, and c, may be, any one or all, functions of

time. However,'for this example, assume these parameters to be

constant. Put eq. 6 into more convenient computational form by

non-dimensionalizing. Let, t = 14 T and divide by m/t'
. Let the

instant in time, t4, at which the observation begins, be t, = o.

Eq. 6 becomes,

- o = 0 (7)

Now the admissible function is simply,

L + (8)

Substitute eq. 8 into eq. 7, note that the integral of the sum

equals the sum of the integrals. Integrate (for arbitrary func-

tions, numerical integration is used) to obtain a set of algebraic
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equations. These equations expressed in matrix form are,

V , KOVI

Eq. 9 constitutes the general solution to the system in that the

time-space path yielded by the solution to this matrix equation

is thesum of the particular and complementary solutions as would

be obtained from the differential equation. Note the initial

conditions as well as the damping coefficient appear in the non-

homogeneous term. When these parameters, along with F(tT) and t\,

are specified, the solution may be obtained. In particular, note

that even with F = 0, the equations are not homogeneous as in the

case of the differential equation.

t/, is arbitrary. However, it is kept relatively small with

the understanding that a longer period of time can be examined

simply by taking the final conditions as calculated for one inter-

val as the initial conditions of the next interval. It should be

emphasized that the number of terms required in the truncated power

series is not the important criteria from a practical viewpoint.

The computer time required for solutions is the important criteria.

Ten terms in the time variable have been found to be sufficient

for all non-stationary problems of particles, beams, and plates

treated to date. With this number of terms in the truncated power

series, the computer time for every case of single degree of

freedom particle motion was
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below the minimum amount ($1.68) charged for the computer and the

accuracy, as will be shown, was far above expectation.

Both non-stationary problems and simple harmonic motion

can be treated with equal ease. It may be of interest to point

out that if F(tjT), c, and V, are set equal to zero, eq. 9 will

generate a cosine curve. If F(t1T), c and yl, are set equal to

zero, eq. 9 will generate a sine curve. These, of course are pre-

cisely the same functions as defined by the differential equation

of the simple spring-mass system. The important point to be made

is this: without any knowledge of the mathematical functions in-

volved in the answer, eq. 4 generates from the power series what-

ever function that is required to yield the solution which, in

the case of particle motion, is the time-space path. For a de-

formable body, it is both the time-space path and configuration as

will be demonstrated in subsequent papers.

Convergence is not only a function of the number of terms

used, but is also a function of the complexity of the motion within

the interval t,~ to t4\. Since t,~ is arbitrary, it may be chosen as

some arbitrary number or as some characteristic time of the system;

e.g., the period or a fraction of the period of one of the free

vibration modes. Further, sufficient accuracy must be utilized in

the calculations to insure accuracy of the results. Although many

problems may be solved and the exact answers obtained by hand cal-

culation through the use of rational numbers or by use of eight

place arithmetic in the computer, fourteen to sixteen place arith-

metic (double precision on the IBM 370-165 computer) is standard

for this work.
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Table I gives the results of a study of the accuracy obtain-

able from eq. 9 when F = c = V= 0. The exact answer is the

cosine function. The point (any point could have been used) chosen

for comparison is CoswtJT= 1. The results show the extreme

accuracy obtainable for three values of N, two values of ti and

for 16 -place arithmetic. and 32-place arithmetic. Few practical

problems require the accuracy of calculation that is available.

Solutions to four linear, one-degree of freedom prob-

lems will be demonstrated:

1) Step forcing function with damping.

2) Polynomial forcing function with damping.

3) The rocket problem (variable mass).

4) Step force acting on a variable mass with variable

damping and variable resisting force.

These examples, except for the last, were chosen because

exact solutions may readily be obtained from the differential

equation for comparison of results. The power of Hamilton's

Law is illustrated with the last example, however, where the so-

lution is obtained with the same ease by the use of Hamilton's

Law as is the solution to a simple harmonic motion problem. The

same statement cannot be made relative to the solution to the

differential equation. Even in those cases where the differen-

tial equation cannot be solved, it is readily available from

Hamilton's Law and the accuracy of the direct solution can readily

be checked ,if desired,by substitution of the direct solution into

the differential equation.
15



EXAMPLE I, STEP FORCE WITH DAMPING, y/& = V = 0

Various solutions, including the exact solution to this prob-

lem by the use of Laplace transforms is given on pages 662-672 of

Ref. 7. There a finite difference solution by Houbolt is also

given. The exact solution as given in Ref. 7 is,

K/Fb = 1.0 - e'2  cM(iq.9 )t-o.o S4 C.95j (10)

where,

,- rt q:='t/-L,

Because of the accuracy of the direct solution, it is neces-

sary to show the comparison of the numbers obtained in tabular

form rather than plotted curves. Fig. 1 shows the results in both

forms.
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EXAMPLE II. POLYNOMIAL FORCING FUNCTION WITH DAMPING

A more difficult problem than the preceding, from the stand-

point of the differential equation, is a forcing function varying

as some arbitrary function of time. For this example, the force

and the parameters are arbitrarily specified to be,

The exact solution is found to be,

K/ = . o1907 - O.oq93 T ,-0475 K, 6. . 3/ 3

" 9 I., / 07 C-j 7riT  + .0. 0/61 & "7T (ii)
' 1i.02ii - +.o,49 & rtJ (11)

Fig. 2 shows a comparison of the direct solution to the exact

solution.
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EXAMPLE III. THE ROCKET PROBLEM (-VARIABLE MASS)

The particular example given here may be found in several

textbooks, in particular, Ref. 7 and Ref. 8. When the gravi-

tational force field, g, the burning rate,m\, and exit velocity,

V/, are taken to be constant, eq. 6 becomes:

The set of algebraic equations resulting from non-dimension-

alization of the above equations and the substitution of eq. 8 with

y1o = V= = 0 are, in matix form,

L+1i let (13)

When the initial mass,m , the static thrust, T4 , and the rate of

mass change,mi,, are specified, the time-space path (one dimen-

sional motion in this simple case) may be found. The result for

one particular choice of parameters is shown in Fig. 3 where the

velocity obtained by differentiation of the direct solution is

compared to the velocity from a first integration of the differ-

ential equation as given in Ref, 7 and 8.
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EXAMPLE IV. FORCING FUNCTION APPLIED TO A SYSTEM WITH VARIABLE

MASS, VARIABLE DAMPING, AND VARIABLE SPRING FORCE

In a general problem of this nature, numerical integration

is used to evaluate the mat x elements in the event that the inte-

grands are defined by, say, curves generated from test data.

However, to illustrate the generality without getting into such

details, the following functions are assumed:

F - T*- Yr . - ( rny:,7l 0

The matix equation obtained from eq. 6 is,

__ r. C 1~ -) -r _.z3 .... K,V;41

Note that example IIlis a special case of this example. Fig.

4 shows the resulting displacement and velocity for an arbitrary

choice of parameters. No solution to the differential equation

was obtained in this case; but, substitution of the direct solution

for yXy and y into the differential equation showed equilibrium of

the forces to be satisfied with the same general accuracy as in the

preceding examples. The percentage error is shown for two points

in time on Fig. 4.
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TWO DEGREES OF FREEDOM

For the sake of brevity, only two examples of two degrees of

freedom will be presented. Both are classic problems. The dif-

ferential equations, but not necessarily the solutions, may be

found in any text on vibration theory. The problems are,

1) The spring coupled pendulum, Fig. 5

2) The double pendulum, Fig. 6

Small angles are assumed at the outset. Non-linear motion

will be treated in separate papers.

When the kinetic energy and work terms for the system with

coordinates and forces acting as shown in Fig. 5, are substituted

into eq. 4 with,

\ (L' + l. Ah y  (15a)

,.\ c + + t i,T - A ' (15b)

a coupled matix equation results,

(16)

The matix elements are given in the appendix. Although both

damping and forcing functions can easily be included as in the

next example, they have been omitted here to give a conservative
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system for which the free vibration frequencies and modes if

desired could be found from the assumption of simple harmonic

motion and the resulting eigenvalue problem; because, as is well

known, a stationary solution exists. However, the above equation

yields the solution directly without any assumption of SHM, and

no eigenvalue is involved. To achieve the motion of this system.

in either one of its two natural modes in the laboratory, one must

know the answer in advance,so that one can release the system in

precisely the configuration that exists at the instant that every

particle in the system would have zero velocity; or one must im-

part precisely the correct velocity to every particle when that

particle is in the precise position at which the imparted velocity

would be the correct value. If such conditions are known in ad-

vance, and are put in the above matix equation as initial con-

ditions, simple harmonic motion in the mode corresponding to the

initial conditions will result from the calculation. In general,

however, it is much more practical to prescribe an initial condi-

tion, whatever it may be, and calculate directly the resulting

motion.

Fig. 5 shows the solution for an arbitrary choice of para-

meters when the initial conditions are taken to be el0 = .08 rad.;

Of = 4 = \ h', 0. Anyone who has ever observed the motion of

such.a pendulum system, will recognize the energy exchange in the

calculated displacement curves to be precisely as observed in the

physical system. If one calculates the energy, it will be found to
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be the same at every instant. The accuracy of the solution

may also be judged from the repetitive amplitudes as the energy

is exchanged between the pendulums with on-going time.

2) The.Double Pendulum

When the kinetic energy and work of the moments for the

double pendulum shown in Fig. 6, are substituted into eq. 4

with

§ G tO~t; + (15b)
RR.

the matix equation is precisely of the form as the previous

example but the matix elements are not the same,

j -- :(17)

The matix elements are given in the appendix for the case where the

damping and spring coefficients are taken to be constant.

Todemonstrate the versatility and power of Hamilton's Law,

one half wave of a sinusoidal moment wasapplied to the second mass

with no damping in the system. The half period of the sinusoidal

moment was taken to be .01 seconds. Fig. 6 shows approximately

two cycles of the resulting motion at which time another sinus-

oidal moment of the same magnitude and duration was applied to the

second mass in the opposite direction, drastically decreasing the

amplitude of the motion. Had this energy been put in at a
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different instant, the amplitude could have been increased dras-

tically. The initial conditions and parameter values are shown

in Fig. 6.

To see the effect of damping, Fig. 7 shows the same sinus-

oidal moment applied to the system at t=o in which damping is

present. The parameters are as listed in Fig. 7. The value of

damping chosen to act on the second pendulum was quite high and

appears to be slightly above critical for the second pendulum.

However, the first pendulum has crossed the zero reference line

just before a sinusoidal moment, opposite in direction to the

first, is again applied. This time, energy is added to the

system by this moment instead of being dissipated as in the

previous example, Fig. 6.

No detail on the initial motion during application of the

force is available from Fig. 6 or Fig. 7. However, the response

during this interval, t, to t , must be accurately calculated

because the conditions at the end of this period are taken as

the initial conditions for the calculation of the motion over the

next interval t, to tb. Fig. 8 is plotted to a scale that shows

the very beginning of the motion during application of the moment.

This feature of Hamilton's Law, i.e., being able to take t.-t&

arbitrarily small, permits the calculation of the initial motion

and wave travel in beams and plates as will be demonstrated in

subsequent papers. Fig. 8 shows the initial motion curves with

and without damping. Damping, whether below critical, critical,

or above critical is of no consequence in the calculation.
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Hamilton's Law, properly applied, yields the solution for.whatever

forces that act on or within the system without second guessing and

without prior knowledge of what the solution has to be. The

accuracy may be checked at any time by simply substituting into

the differential equations. These equations are always readily

available from Hamilton's Law without regard to the theory of

functionals as set forth in the variational calculus.
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CONCLUSION

It has been shown that, contrary to the state of energy

theory found in textbooks and in the variational calculus, direct

solutions to non-stationary particle motion may be obtained through

application of Hamilton's Law for both conservative and non-con-

servative systems. In fact, no differentation needs to be made

as to whether a system is conservative, non-conservative, sta-

tionary, or non-stationary. Constraints were not treated ex-

plicitly in this first introductory paper; but, future papers will

treat both holonomic and non-holonomic systems without identifi-

cation and without benefit of mentioning Lagrangian multipliers.

Only linear systems will be treated in the first sequence of

papers; but, this work developed from a study of what one might

suppose to be a totally unrelated study of thermally stressed

plates subjected to non-linear large deflections. When the so-

lution to that problem was finally attained, the meaning of

Hamilton's Law as a means of achieving direct solutions to the

problems of mechanics had been discovered (or rediscovered?). This

non-linear work has been temporarily set aside, but will be offered

for publication when its logical place in a sequence of papers on

the subject has been reached.

It should be pointed out that an integration by parts of the

kinetic energy with respect to time in Hamilton's Law will yield

the inertia forces and will cause the term, -/ I ,

to cancel from the equation, leaving Hamilton's Law precisely in

the form obtained when Galerkin's procedure is'applied to the dif-

ferential equation of a particle. This result is also precisely
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that obtained from Hamilton's principle when, following an inte-

gration by parts, the term, T .%S , is arbitrarily set

equal to zero because "... the end points must be co-terminus in

both space and time".' The result, from which direct solutions

to non-stationary problems may be obtained is, of course, no

longer Hamilton's principle but eq. 5, which is completely equiva-

lent to Hamilton's Law. When independent space variables are

involved, as in deformable body problems, the application of

Galerkin'smethod applied to the differential equations is subject

to constraints not found in the application of Hamilton's Law;

e.g., the treatment of the boundary conditions which will be

discussed in subsequent papers.
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APPENDIX

The Matrix elements for the two degree of freedom spring

coupled pendulums are:

c - L- . LL( /(+- % l)--t,; (K h? + Yi )/C +1+)

1),. = Kh2 ? /( + k+ 0

F'. = -miP + , 1m

N = -t'2 (18 - i) - i 2 -/L-1Z)/U ++

.Kb - Lko - i. ei Al +)

,27



The Matrix elements for the forced, damped, double pendulum

with springs are:

I ' = - ,*+ m~) t - /+ / + - - (,* Q.t, i ,+ )

v-n I enn.£4 Bk/(k- ) +CtL k/j+ k) + Kit"/ Li+ h+

Ki." = - ili i ,, / ( -.a -s) 4" eitl / L+a )+ K 't /[L.L

L = -minlklt-i) /lk.-l) - A)

(K1 + mig ' t~l /I k t R+ L)

+t< o Kk) eo - Krei, + 1 '1 +ms) g3e ()
+) i- Kibia +( )

= ; ddr +tei sP ti -tt Mi Lt) + k ,

+ +;Lg 4 bi* /iI 2)
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TABLE 1. CONVERGENCE

N Number t,= T/4- t3 T/4a
Degree of of Cycles

Polynomial Calculated % error % error % error' %error'
16-place 32-place 16-place 32-place

Arithmetic Arithmetic Arithmetic Arithmetic

Exact, CoswtT = 1.0

10 1 -2.6x102 8.7xl09 1.36x0 -  6.5xl-4
10 10 -6.8xlo0- 8.9x0- -1.38 4.5x10 4

10 25 -1.5xlO'- 2.3xl10 -3.41 lxl0-2

12 1 1.0x0- -7.4xl0
12 10 2.0x10-8 -5.2x10o
12 25 1.3x10 -1.3x10

15 1 i.9x10- 5.5xlO
15 10 2.1x10 / 4.0x0lo-
15 25 1.3xlO 1 .1x10-

a. T=2n/w;w= (k/m)/ 
2

b. % error = (1 - calculated value) x 100
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2.0 exact solution:
yk/F = . - 2s(cos(19.899 s)

1.8 + .1005 sin(19.899s))

1.6 - -exact
c - k olOterm

1.4 - / polynomial
m

1.2- y(0)= (0) = O

yk.___ C1.- F(t)= 1(t) . p c e !- -t -F F displacement
.8 7 exact enerqy

4 .64336.64367
.6 1.5824 1.5826
1.2 1.5943 1.5944

4 1.6 .8713 2 .87134

.2 2.0 46821 46818

0. 2 .4 .6 .8 1. 1.2 1.4 1.6 1.8 2.0

31



-L-(

0. .2 .4 .6 .8 1.0

- exact

F (t) . 10 term
- polynomial

-.2 -
yk
FOk

-.3 1
cy

F(t) F [-.7229 7 + 1.024 7-1]
-.4- exact:

yk/ = .1807 -. 0934T -. 8754 T2 -. 6311r 3

+ 1.024 T- e'8 11 1807cos(,7r )
-.5- +.0169 sin(T7T)]

tI d

3.
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Vexact=/m, L N(mo/M) -gt

y, ft. velocity
Sft. M= mt 7 exact direct

vsec. mo=.25 slugs 1. 81.2369 81.2369
3000- m,=-.01 slugs/sec. 2. 2675266 2675265 /

T .3. 6933666 693.3654/T=1Qlb.

W=(m. rrt)g
2000.- T =t t, tl= 6.sec.

100- . velocity

displacement(y)

0.5 1.0 1.5 2.0 25 T
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LHS RHS
y, ft. D. E.:(25-.01t) .(.OO1+.01t) (.05+005t)y =Ts-(.25-.Olt) g
, seftx4. Ts=static thrust=lOlb., g=32.2 ft./sec.2

80 = t/t, tl=4.sec.

60.

40. displacement(y)

I\
20: / \ 7-- velocity()

I ..

0. 1. 2. / 3. 4. 5. r
-2 DE.= LH S - RHS= 6

\ °/oerror= E /RHSx 100

-40'" O/oerror(rT=2.) =3.3x10 - 4

oloerror(T=5) = 36x10 -5
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,08- e e 2

/ , I\ /
.04- ,' I i

I I ' I I !

.02- iI II

- s t- 2.523

II I I

S2.s ug.,

2 1 I

VI

-cost 2.52 , 4.ft.s "~ .-- "t m1 - m=2.slugsJ k 16.1 ft. k=lOlb./ft.

at .= 0, . _-Grad m yQ6892sec.



torque, ft.lb.
e, rad.x5Q -1 position at t=q

8 l: 1 l 8 2= o.82 adx5

86 .slug60-1 1. 2

40 torque=80sin7rT

2 1. slug r=t/t 1 tl =.01 sec,

: 1 .2 A .5 .8 9 1. (sec
-2 .

-40.1---torque

-60.

-80
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to rque, ft.l b.
E, radx5Q 1 e positionat t=O,

12
180.- 0

66. B slug 2 2 2

40. mping= 5ft.b. sec.
21 1slug torque= 80sinnrT

T=tt 1l; t= .Olsec.
O.-.7 .5 .7 ..8 ---. t(sec)

-20:

-40. -- torque

-6a 3
-80:
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torque,ft. Ib.xl0 -1

e, rad.xl0 3

8-~ ---- e2 undamped
torque-s -'

4: , \-2damped

.2 .6 .8 1
4 damped

-2: 1

-4: t=.O sec. e undamped
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